Skip to main content

PyCon: Python for Data Lovers: Explore It, Analyze It, Map It

See the website.

I missed the beginning of this talk, and since I'm not a data lover, I'm afraid my notes may not do it justice.

There is lots of interesting, "open data."

There is a lot of data that is released by cities.

She's a geographer and obviously a real data lover. She gets excited about all this data.

csvkit is an amazing set of utilities for working with CSV. It replaces the csv module.

"Social network analysis is focused on uncovering the patterning of people's interactions."

They used QGIS.

She relies heavily on Google Refine.

PySAL is really great for spatial analysis.

She recommended "Social Network Analysis for Startups" from O'Reilly. Her advisor wrote it.


Anonymous said…
Python (or at least, pypy) is a really nice tool for processing data.

Unfortunately, with the GIL, its performance is abysmal, especially on large machines (aka recent desktops) with 8+ cores.

Python really needs to get with the times. I've had to abandon it for now, in favor of D. Maybe someday I'll come back to PyPy, if it ever catches up, but I think the damage is already done.
jjinux said…
The correct way to handle I/O bound processing in Python is gevent, which is not limited by the GIL. The correct way to handle CPU bound concurrency in Python is via using multiple processes.

In Guido's keynote, he said, "OS level threads are meant for parallel IO, not for parallel computation." Use separate processes for each core. One team was using Python on a machine with 64,000 cores.

D is a nice language, but I don't believe it's fully open source. Go is probably better. Neither one has the breadth of third-party libraries that Python has.

Popular posts from this blog

Ubuntu 20.04 on a 2015 15" MacBook Pro

I decided to give Ubuntu 20.04 a try on my 2015 15" MacBook Pro. I didn't actually install it; I just live booted from a USB thumb drive which was enough to try out everything I wanted. In summary, it's not perfect, and issues with my camera would prevent me from switching, but given the right hardware, I think it's a really viable option. The first thing I wanted to try was what would happen if I plugged in a non-HiDPI screen given that my laptop has a HiDPI screen. Without sub-pixel scaling, whatever scale rate I picked for one screen would apply to the other. However, once I turned on sub-pixel scaling, I was able to pick different scale rates for the internal and external displays. That looked ok. I tried plugging in and unplugging multiple times, and it didn't crash. I doubt it'd work with my Thunderbolt display at work, but it worked fine for my HDMI displays at home. I even plugged it into my TV, and it stuck to the 100% scaling I picked for the othe

ERNOS: Erlang Networked Operating System

I've been reading Dreaming in Code lately, and I really like it. If you're not a dreamer, you may safely skip the rest of this post ;) In Chapter 10, "Engineers and Artists", Alan Kay, John Backus, and Jaron Lanier really got me thinking. I've also been thinking a lot about Minix 3 , Erlang , and the original Lisp machine . The ideas are beginning to synthesize into something cohesive--more than just the sum of their parts. Now, I'm sure that many of these ideas have already been envisioned within , LLVM , Microsoft's Singularity project, or in some other place that I haven't managed to discover or fully read, but I'm going to blog them anyway. Rather than wax philosophical, let me just dump out some ideas: Start with Minix 3. It's a new microkernel, and it's meant for real use, unlike the original Minix. "This new OS is extremely small, with the part that runs in kernel mode under 4000 lines of executable code.&quo

Haskell or Erlang?

I've coded in both Erlang and Haskell. Erlang is practical, efficient, and useful. It's got a wonderful niche in the distributed world, and it has some real success stories such as CouchDB and Haskell is elegant and beautiful. It's been successful in various programming language competitions. I have some experience in both, but I'm thinking it's time to really commit to learning one of them on a professional level. They both have good books out now, and it's probably time I read one of those books cover to cover. My question is which? Back in 2000, Perl had established a real niche for systems administration, CGI, and text processing. The syntax wasn't exactly beautiful (unless you're into that sort of thing), but it was popular and mature. Python hadn't really become popular, nor did it really have a strong niche (at least as far as I could see). I went with Python because of its elegance, but since then, I've coded both p